Skip to contents

Analyses total time on defined AOI regions across trials. Works with fixation and raw data as the input (must use one or the other, not both).

Usage

AOI_time(
  data,
  data_type = NULL,
  AOIs,
  AOI_names = NULL,
  sample_rate = NULL,
  as_prop = FALSE,
  trial_time = NULL,
  participant_ID = "participant_ID"
)

Arguments

data

A dataframe of either fixation data (from fix_dispersion) or raw data

data_type

Whether data is a fixation ("fix") or raw data ("raw")

AOIs

A dataframe of areas of interest (AOIs), with one row per AOI (x, y, width_radius, height).

AOI_names

An optional vector of AOI names to replace the default "AOI_1", "AOI_2", etc.

sample_rate

Optional sample rate of the eye-tracker (Hz) for use with data. If not supplied, the sample rate will be estimated from the time column and the number of samples.

as_prop

whether to return time in AOI as a proportion of the total time of trial

trial_time

needed if as_prop is set to TRUE. a vector of the time taken in each trial. Equal to the length of x trials by y participants in the dataset

participant_ID

the variable that determines the participant identifier. If no column present, assumes a single participant

Value

a dataframe containing the time on the passed AOIs for each trial. One column for each AOI separated by trial.

Details

AOI_time can take either single participant data or multiple participants where there is a variable for unique participant identification. The function looks for an identifier named participant_ID by default and will treat this as multiple-participant data as default, if not it is handled as single participant data, or the participant_ID needs to be specified

Examples


# \donttest{
data <- combine_eyes(HCL)
fix_d <- fixation_dispersion(data, participant_ID = "pNum")

# fixation data
AOI_time(data = fix_d, data_type = "fix", AOIs = HCL_AOIs, participant_ID = "pNum")
#>    pNum trial   AOI time
#> 1   118     1 AOI_1 3500
#> 2   118     2 AOI_1 1400
#> 3   118     3 AOI_1  576
#> 4   118     4 AOI_1 2563
#> 5   118     5 AOI_1  253
#> 6   118     6 AOI_1  789
#> 7   118     1 AOI_2 1598
#> 8   118     2 AOI_2 1292
#> 9   118     3 AOI_2  743
#> 10  118     4 AOI_2 3574
#> 11  118     5 AOI_2 1101
#> 12  118     6 AOI_2  909
#> 13  118     1 AOI_3 5886
#> 14  118     2 AOI_3 3924
#> 15  118     3 AOI_3 2932
#> 16  118     4 AOI_3 2609
#> 17  118     5 AOI_3 2136
#> 18  118     6 AOI_3 2380
#> 19  119     1 AOI_1 3656
#> 20  119     2 AOI_1  912
#> 21  119     3 AOI_1 1959
#> 22  119     4 AOI_1 4288
#> 23  119     5 AOI_1 4805
#> 24  119     6 AOI_1 3447
#> 25  119     1 AOI_2 1743
#> 26  119     2 AOI_2  880
#> 27  119     3 AOI_2 2152
#> 28  119     4 AOI_2 2043
#> 29  119     5 AOI_2 3270
#> 30  119     6 AOI_2 2920
#> 31  119     1 AOI_3 2394
#> 32  119     2 AOI_3 1944
#> 33  119     3 AOI_3 2106
#> 34  119     4 AOI_3 1293
#> 35  119     5 AOI_3 2983
#> 36  119     6 AOI_3 4962

#raw data
AOI_time(data = data, data_type = "raw", AOIs = HCL_AOIs, participant_ID = "pNum")
#>    pNum trial   AOI time
#> 1   118     1 AOI_1 3653
#> 2   118     2 AOI_1 1410
#> 3   118     3 AOI_1  590
#> 4   118     4 AOI_1 2576
#> 5   118     5 AOI_1  347
#> 6   118     6 AOI_1  817
#> 7   118     1 AOI_2 1716
#> 8   118     2 AOI_2 1373
#> 9   118     3 AOI_2  797
#> 10  118     4 AOI_2 3766
#> 11  118     5 AOI_2 1156
#> 12  118     6 AOI_2  923
#> 13  118     1 AOI_3 6019
#> 14  118     2 AOI_3 4199
#> 15  118     3 AOI_3 3083
#> 16  118     4 AOI_3 2923
#> 17  118     5 AOI_3 2363
#> 18  118     6 AOI_3 2736
#> 19  119     1 AOI_1 3829
#> 20  119     2 AOI_1  953
#> 21  119     3 AOI_1 2016
#> 22  119     4 AOI_1 4366
#> 23  119     5 AOI_1 5022
#> 24  119     6 AOI_1 3506
#> 25  119     1 AOI_2 1806
#> 26  119     2 AOI_2 1047
#> 27  119     3 AOI_2 2333
#> 28  119     4 AOI_2 2120
#> 29  119     5 AOI_2 3723
#> 30  119     6 AOI_2 3136
#> 31  119     1 AOI_3 2553
#> 32  119     2 AOI_3 2180
#> 33  119     3 AOI_3 2440
#> 34  119     4 AOI_3 1520
#> 35  119     5 AOI_3 3203
#> 36  119     6 AOI_3 5059

#as proportional data
AOI_time(data = fix_d, data_type = "fix", AOIs = HCL_AOIs, participant_ID = "pNum",
         as_prop = TRUE, trial_time = HCL_behavioural$RT)
#>    pNum trial   AOI       time
#> 1   118     1 AOI_1 0.25993316
#> 2   118     1 AOI_2 0.11867805
#> 3   118     1 AOI_3 0.43713331
#> 4   118     2 AOI_1 0.17958618
#> 5   118     2 AOI_2 0.16573239
#> 6   118     2 AOI_3 0.50335441
#> 7   118     3 AOI_1 0.10936432
#> 8   118     3 AOI_2 0.14107238
#> 9   118     3 AOI_3 0.55669477
#> 10  118     4 AOI_1 0.25859894
#> 11  118     4 AOI_2 0.36060579
#> 12  118     4 AOI_3 0.26324021
#> 13  118     5 AOI_1 0.05718548
#> 14  118     5 AOI_2 0.24885855
#> 15  118     5 AOI_3 0.48279915
#> 16  118     6 AOI_1 0.15102791
#> 17  118     6 AOI_2 0.17399793
#> 18  118     6 AOI_3 0.45557215
#> 19  119     1 AOI_1 0.35980711
#> 20  119     1 AOI_2 0.17153823
#> 21  119     1 AOI_3 0.23560673
#> 22  119     2 AOI_1 0.17986747
#> 23  119     2 AOI_2 0.17355633
#> 24  119     2 AOI_3 0.38340170
#> 25  119     3 AOI_1 0.25872657
#> 26  119     3 AOI_2 0.28421623
#> 27  119     3 AOI_3 0.27814097
#> 28  119     4 AOI_1 0.47366037
#> 29  119     4 AOI_2 0.22567354
#> 30  119     4 AOI_3 0.14282716
#> 31  119     5 AOI_1 0.37422118
#> 32  119     5 AOI_2 0.25467290
#> 33  119     5 AOI_3 0.23232087
#> 34  119     6 AOI_1 0.27193121
#> 35  119     6 AOI_2 0.23035658
#> 36  119     6 AOI_3 0.39144841
# }