Skip to contents

Analyses total time on defined AOI regions across trials. Works with fixation and raw data as the input (must use one or the other, not both).

Usage

AOI_time(
  data,
  data_type = NULL,
  AOIs,
  AOI_names = NULL,
  sample_rate = NULL,
  as_prop = FALSE,
  trial_time = NULL,
  participant_ID = "participant_ID"
)

Arguments

data

A dataframe of either fixation data (from fix_dispersion) or raw data

data_type

Whether data is a fixation ("fix") or raw data ("raw")

AOIs

A dataframe of areas of interest (AOIs), with one row per AOI (x, y, width_radius, height).

AOI_names

An optional vector of AOI names to replace the default "AOI_1", "AOI_2", etc.

sample_rate

Optional sample rate of the eye-tracker (Hz) for use with data. If not supplied, the sample rate will be estimated from the time column and the number of samples.

as_prop

whether to return time in AOI as a proportion of the total time of trial

trial_time

a vector of the time taken in each trial. Equal to the length of x trials by y participants in the dataset

participant_ID

the variable that determines the participant identifier. If no column present, assumes a single participant

Value

a dataframe containing the time on the passed AOIs for each trial. One column for each AOI separated by trial.

Details

AOI_time can take either single participant data or multiple participants where there is a variable for unique participant identification. The function looks for an identifier named participant_ID by default and will treat this as multiple-participant data as default, if not it is handled as single participant data, or the participant_ID needs to be specified

Examples


# \donttest{
data <- combine_eyes(HCL)
fix_d <- fixation_dispersion(data, participant_ID = "pNum")

# fixation data
AOI_time(data = fix_d, data_type = "fix", AOIs = HCL_AOIs, participant_ID = "pNum")
#>    pNum trial AOI_1 AOI_2 AOI_3
#> 1   118     1  3500  1671  5886
#> 2   118     2  1387  1292  3924
#> 3   118     3   576   743  2932
#> 4   118     4  2412  3546  2609
#> 5   118     5     0  1101  2136
#> 6   118     6   789   886  2380
#> 7   119     1  3673  1743  2394
#> 8   119     2   912   880  1944
#> 9   119     3  1959  2152  2106
#> 10  119     4  4288  2043  1293
#> 11  119     5  4805  3270  2983
#> 12  119     6  3447  2920  4962

#raw data
AOI_time(data = data, data_type = "raw", AOIs = HCL_AOIs,
         sample_rate = 120, participant_ID = "pNum")
#>    pNum trial AOI_1 AOI_2 AOI_3
#> 1   118     1  9050  4283 15050
#> 2   118     2  3508  3392 10500
#> 3   118     3  1467  1967  7708
#> 4   118     4  6050  9358  7308
#> 5   118     5   242  2883  5908
#> 6   118     6  2017  2283  6842
#> 7   119     1  9550  4475  6383
#> 8   119     2  2333  2600  5450
#> 9   119     3  5008  5792  6100
#> 10  119     4 10867  5250  3800
#> 11  119     5 12500  9242  8008
#> 12  119     6  8742  7783 12650
# }