Analyses total time on defined AOI regions across trials separated into bins. Works with raw data as the input. Data can be separated into bins of a given length of time and the number of bins per trial is calculated automatically, keeping the bin length consistent across varying lengths of trial. Any r=data that cannot fill a bin (tpyically the last few milliseconds of the trial) are dropped to ensure that bins are of a consistent length
Usage
AOI_time_binned(
data,
AOIs,
AOI_names = NULL,
sample_rate = NULL,
bin_length = NULL,
max_time = NULL,
as_prop = FALSE,
participant_ID = "participant_ID"
)
Arguments
- data
A dataframe of raw data
- AOIs
A dataframe of areas of interest (AOIs), with one row per AOI (x, y, width_radius, height).
- AOI_names
An optional vector of AOI names to replace the default "AOI_1", "AOI_2", etc.
- sample_rate
Optional sample rate of the eye-tracker (Hz) for use with data. If not supplied, the sample rate will be estimated from the time column and the number of samples.
- bin_length
the time duration to be used for each bin.
- max_time
maximum length of time to use, default is total trial length
- as_prop
whether to return time in AOI as a proportion of the total time of trial
- participant_ID
the variable that determines the participant identifier. If no column present, assumes a single participant
Value
a dataframe containing the time on the passed AOIs for each trial. One column for each AOI separated by trial.
Details
AOI_time_binned can take either single participant data or multiple participants where there is a variable for unique participant identification.
The function looks for an identifier named participant_ID
by default and will treat this as multiple-participant data as default,
if not it is handled as single participant data, or the participant_ID needs to be specified
Examples
# \donttest{
data <- combine_eyes(HCL)
#with bins of 100ms each and only for the first 2000ms
AOI_time_binned(data = data, AOIs = HCL_AOIs, participant_ID = "pNum",
bin_length = 100, max_time = 2000)
#> pNum trial bin_n AOI_1 AOI_2 AOI_3
#> 1 118 1 1 0 0 0
#> 2 118 1 2 0 0 0
#> 3 118 1 3 0 0 0
#> 4 118 1 4 0 0 0
#> 5 118 1 5 0 0 63
#> 6 118 1 6 0 0 100
#> 7 118 1 7 0 0 100
#> 8 118 1 8 27 0 47
#> 9 118 1 9 100 0 0
#> 10 118 1 10 100 0 0
#> 11 118 1 11 100 0 0
#> 12 118 1 12 90 0 0
#> 13 118 1 13 0 0 0
#> 14 118 1 14 0 0 20
#> 15 118 1 15 0 0 100
#> 16 118 1 16 0 0 100
#> 17 118 1 17 0 0 100
#> 18 118 1 18 0 0 100
#> 19 118 1 19 0 0 100
#> 20 118 1 20 0 0 100
#> 21 118 2 1 0 0 0
#> 22 118 2 2 0 0 0
#> 23 118 2 3 0 0 0
#> 24 118 2 4 0 20 0
#> 25 118 2 5 0 100 0
#> 26 118 2 6 0 100 0
#> 27 118 2 7 0 100 0
#> 28 118 2 8 0 100 0
#> 29 118 2 9 0 100 0
#> 30 118 2 10 0 100 0
#> 31 118 2 11 0 100 0
#> 32 118 2 12 0 63 13
#> 33 118 2 13 0 0 100
#> 34 118 2 14 0 0 100
#> 35 118 2 15 0 0 100
#> 36 118 2 16 0 0 100
#> 37 118 2 17 0 0 100
#> 38 118 2 18 0 0 100
#> 39 118 2 19 0 0 100
#> 40 118 2 20 0 0 90
#> 41 118 3 1 0 0 0
#> 42 118 3 2 0 0 0
#> 43 118 3 3 0 0 0
#> 44 118 3 4 0 0 7
#> 45 118 3 5 0 0 100
#> 46 118 3 6 0 0 100
#> 47 118 3 7 0 0 100
#> 48 118 3 8 0 0 100
#> 49 118 3 9 0 0 100
#> 50 118 3 10 0 33 40
#> 51 118 3 11 0 100 0
#> 52 118 3 12 0 100 0
#> 53 118 3 13 57 10 0
#> 54 118 3 14 100 0 0
#> 55 118 3 15 100 0 0
#> 56 118 3 16 100 0 0
#> 57 118 3 17 100 0 0
#> 58 118 3 18 100 0 0
#> 59 118 3 19 33 0 40
#> 60 118 3 20 0 0 100
#> 61 118 4 1 0 0 0
#> 62 118 4 2 0 20 0
#> 63 118 4 3 0 100 0
#> 64 118 4 4 0 100 0
#> 65 118 4 5 0 100 0
#> 66 118 4 6 0 43 33
#> 67 118 4 7 0 0 100
#> 68 118 4 8 0 0 100
#> 69 118 4 9 0 0 100
#> 70 118 4 10 0 0 100
#> 71 118 4 11 0 0 73
#> 72 118 4 12 100 0 0
#> 73 118 4 13 100 0 0
#> 74 118 4 14 100 0 0
#> 75 118 4 15 100 0 0
#> 76 118 4 16 47 0 0
#> 77 118 4 17 0 63 0
#> 78 118 4 18 0 100 0
#> 79 118 4 19 0 100 0
#> 80 118 4 20 0 100 0
#> 81 118 5 1 0 0 0
#> 82 118 5 2 7 0 0
#> 83 118 5 3 97 0 0
#> 84 118 5 4 100 0 0
#> 85 118 5 5 37 0 40
#> 86 118 5 6 0 0 100
#> 87 118 5 7 0 0 100
#> 88 118 5 8 0 0 67
#> 89 118 5 9 0 0 0
#> 90 118 5 10 43 0 0
#> 91 118 5 11 63 7 0
#> 92 118 5 12 0 100 0
#> 93 118 5 13 0 100 0
#> 94 118 5 14 0 100 0
#> 95 118 5 15 0 100 0
#> 96 118 5 16 0 100 0
#> 97 118 5 17 0 73 3
#> 98 118 5 18 0 0 100
#> 99 118 5 19 0 0 100
#> 100 118 5 20 0 0 100
#> 101 118 6 1 0 0 0
#> 102 118 6 2 0 0 0
#> 103 118 6 3 0 0 0
#> 104 118 6 4 0 0 60
#> 105 118 6 5 0 0 100
#> 106 118 6 6 0 0 80
#> 107 118 6 7 0 93 0
#> 108 118 6 8 0 100 0
#> 109 118 6 9 0 100 0
#> 110 118 6 10 0 100 0
#> 111 118 6 11 0 100 0
#> 112 118 6 12 0 70 0
#> 113 118 6 13 97 0 0
#> 114 118 6 14 100 0 0
#> 115 118 6 15 100 0 0
#> 116 118 6 16 30 0 43
#> 117 118 6 17 0 0 100
#> 118 118 6 18 0 0 100
#> 119 118 6 19 0 0 100
#> 120 118 6 20 0 0 100
#> 121 119 1 1 0 0 0
#> 122 119 1 2 0 0 0
#> 123 119 1 3 0 0 0
#> 124 119 1 4 0 0 0
#> 125 119 1 5 0 0 77
#> 126 119 1 6 0 0 100
#> 127 119 1 7 0 0 100
#> 128 119 1 8 0 0 100
#> 129 119 1 9 0 0 100
#> 130 119 1 10 7 0 70
#> 131 119 1 11 100 0 0
#> 132 119 1 12 100 0 0
#> 133 119 1 13 100 0 0
#> 134 119 1 14 90 0 0
#> 135 119 1 15 0 0 7
#> 136 119 1 16 0 0 70
#> 137 119 1 17 0 0 100
#> 138 119 1 18 0 0 100
#> 139 119 1 19 0 0 80
#> 140 119 1 20 0 0 0
#> 141 119 2 1 0 0 0
#> 142 119 2 2 23 0 0
#> 143 119 2 3 100 0 0
#> 144 119 2 4 100 0 0
#> 145 119 2 5 100 0 0
#> 146 119 2 6 73 0 0
#> 147 119 2 7 0 90 0
#> 148 119 2 8 0 100 0
#> 149 119 2 9 0 100 0
#> 150 119 2 10 0 100 0
#> 151 119 2 11 0 93 0
#> 152 119 2 12 0 0 0
#> 153 119 2 13 0 0 43
#> 154 119 2 14 0 0 100
#> 155 119 2 15 0 0 100
#> 156 119 2 16 0 0 100
#> 157 119 2 17 0 0 100
#> 158 119 2 18 0 0 100
#> 159 119 2 19 0 0 100
#> 160 119 2 20 0 0 100
#> 161 119 3 1 0 0 0
#> 162 119 3 2 0 0 0
#> 163 119 3 3 97 0 0
#> 164 119 3 4 100 0 0
#> 165 119 3 5 100 0 0
#> 166 119 3 6 100 0 0
#> 167 119 3 7 73 0 0
#> 168 119 3 8 0 93 0
#> 169 119 3 9 0 100 0
#> 170 119 3 10 0 100 0
#> 171 119 3 11 0 100 0
#> 172 119 3 12 0 63 17
#> 173 119 3 13 0 0 100
#> 174 119 3 14 0 0 100
#> 175 119 3 15 0 0 100
#> 176 119 3 16 0 0 100
#> 177 119 3 17 0 0 100
#> 178 119 3 18 0 0 100
#> 179 119 3 19 0 0 100
#> 180 119 3 20 0 0 100
#> 181 119 4 1 0 0 0
#> 182 119 4 2 0 0 0
#> 183 119 4 3 47 0 0
#> 184 119 4 4 100 0 0
#> 185 119 4 5 100 0 0
#> 186 119 4 6 100 0 0
#> 187 119 4 7 100 0 0
#> 188 119 4 8 100 0 0
#> 189 119 4 9 100 0 0
#> 190 119 4 10 100 0 0
#> 191 119 4 11 100 0 0
#> 192 119 4 12 100 0 0
#> 193 119 4 13 100 0 0
#> 194 119 4 14 93 0 0
#> 195 119 4 15 0 73 0
#> 196 119 4 16 0 100 0
#> 197 119 4 17 0 100 0
#> 198 119 4 18 0 100 0
#> 199 119 4 19 0 67 0
#> 200 119 4 20 57 0 0
#> 201 119 5 1 0 0 0
#> 202 119 5 2 0 0 0
#> 203 119 5 3 70 0 0
#> 204 119 5 4 100 0 0
#> 205 119 5 5 100 0 0
#> 206 119 5 6 100 0 0
#> 207 119 5 7 100 0 0
#> 208 119 5 8 100 0 0
#> 209 119 5 9 100 0 0
#> 210 119 5 10 100 0 0
#> 211 119 5 11 100 0 0
#> 212 119 5 12 3 60 0
#> 213 119 5 13 0 100 0
#> 214 119 5 14 0 100 0
#> 215 119 5 15 0 100 0
#> 216 119 5 16 0 100 0
#> 217 119 5 17 0 100 0
#> 218 119 5 18 0 100 0
#> 219 119 5 19 0 100 0
#> 220 119 5 20 0 100 0
#> 221 119 6 1 0 0 0
#> 222 119 6 2 0 0 0
#> 223 119 6 3 0 0 0
#> 224 119 6 4 0 0 0
#> 225 119 6 5 0 0 67
#> 226 119 6 6 0 0 97
#> 227 119 6 7 80 0 0
#> 228 119 6 8 100 0 0
#> 229 119 6 9 100 0 0
#> 230 119 6 10 100 0 0
#> 231 119 6 11 100 0 0
#> 232 119 6 12 100 0 0
#> 233 119 6 13 100 0 0
#> 234 119 6 14 100 0 0
#> 235 119 6 15 100 0 0
#> 236 119 6 16 100 0 0
#> 237 119 6 17 100 0 0
#> 238 119 6 18 100 0 0
#> 239 119 6 19 100 0 0
#> 240 119 6 20 100 0 0
# }