Skip to contents

Determine fixations by assessing the velocity of eye-movements, using a method that is similar to that proposed by Salvucci & Goldberg (1996). Applies the algorithm used in VTI_saccade and removes the identified saccades before assessing whether separated fixations are outside of the dispersion tolerance. If they are outside of this tolerance, the fixation is treated as a new fixation regardless of the length of saccade separating them. Compared to fixation_dispersion(), fixation_VTI() is more conservative in determining a fixation as smaller saccades are discounted and the resulting data is treated as a continued fixation (assuming it is within the pixel tolerance set by disp_tol). Returns a summary of the fixations found per trial, including start and end coordinates, timing, duration, mean velocity, and peak velocity.

Usage

fixation_VTI(
  data,
  sample_rate = NULL,
  threshold = 100,
  min_dur = 150,
  min_dur_sac = 20,
  disp_tol = 100,
  smooth = FALSE,
  progress = TRUE,
  participant_ID = "participant_ID"
)

Arguments

data

A dataframe with raw data (time, x, y, trial) for one participant

sample_rate

sample rate of the eye-tracker. If default of NULL, then it will be computed from the timestamp data and the number of samples

threshold

velocity threshold (degrees of VA / sec) to be used for identifying saccades.

min_dur

Minimum duration (in milliseconds) of period over which fixations are assessed

min_dur_sac

Minimum duration (in milliseconds) for saccades to be determined

disp_tol

Maximum tolerance (in pixels) for the dispersion of values allowed over fixation period

smooth

include a call to eyetools::smoother on each trial

progress

Display a progress bar

participant_ID

the variable that determines the participant identifier. If no column present, assumes a single participant

Value

a dataframe containing each detected fixation by trial, with mean x/y position in pixel, start and end times, and duration.

Details

It can take either single participant data or multiple participants where there is a variable for unique participant identification. The function looks for an identifier named participant_ID by default and will treat this as multiple-participant data as default, if not it is handled as single participant data, or the participant_ID needs to be specified

References

Salvucci, D. D., & Goldberg, J. H. (2000). Identifying fixations and saccades in eye-tracking protocols. Proceedings of the Symposium on Eye Tracking Research & Applications - ETRA '00, 71–78.

Examples

# \donttest{
data <- combine_eyes(HCL)
data <- interpolate(data, participant_ID = "pNum")
fixation_VTI(data[data$pNum == 119,], participant_ID = "pNum")
#>     pNum trialNumber fix_n start   end duration         x        y min_dur
#> 1    119           1     1     0   223      223  972.1103 765.7244     150
#> 2    119           1     2   240   419      179  937.0440 643.6233     150
#> 3    119           1     3   439   959      520  974.6348 419.9574     150
#> 4    119           1     4  1009  1386      377  409.2640 753.4045     150
#> 5    119           1     5  1589  1856      267  971.0424 304.7891     150
#> 6    119           1     6  1889  2066      177  979.2380 581.0955     150
#> 7    119           1     7  2112  3022      910 1500.3562 765.8028     150
#> 8    119           1     8  3089  3292      203  444.7179 735.7169     150
#> 9    119           1     9  3326  4159      833  964.2701 480.0865     150
#> 10   119           1    10  4209  4652      443  460.4234 761.3488     150
#> 11   119           1    11  4715  5005      290 1477.5086 754.9841     150
#> 12   119           1    12  5059  5272      213  439.7000 686.8906     150
#> 13   119           1    13  5278  6722     1444  412.1090 779.4104     150
#> 14   119           1    14  6741  7301      560  505.3288 727.6988     150
#> 15   119           1    15  7375  7598      223 1480.4473 767.7752     150
#> 16   119           1    16  7618  7885      267 1587.2292 743.6164     150
#> 17   119           1    17  7948  8448      500  995.6632 325.6133     150
#> 18   119           1    18  8498  8848      350  343.7616 673.5203     150
#> 19   119           1    19  8904  9108      204  970.3422 314.1502     150
#> 20   119           1    20  9154  9604      450  451.2965 775.9674     150
#> 21   119           1    21  9638  9814      176  890.3137 527.7975     150
#> 22   119           1    22  9828  9984      156  941.0363 462.3133     150
#> 23   119           2     1     0   160      160  964.4077 800.0306     150
#> 24   119           2     2   200   563      363  489.4246 748.2445     150
#> 25   119           2     3   626   783      157 1432.7215 766.1448     150
#> 26   119           2     4   800  1086      286 1546.5018 746.7085     150
#> 27   119           2     5  1273  1493      220  997.7612 399.4104     150
#> 28   119           2     6  1513  2086      573  950.6969 208.1089     150
#> 29   119           2     7  2106  2963      857  979.5507 414.6998     150
#> 30   119           2     8  3006  3216      210  934.7593 642.2169     150
#> 31   119           2     9  3249  3563      314  512.3586 766.2387     150
#> 32   119           2    10  3606  3996      390  958.9479 279.0520     150
#> 33   119           2    11  4026  4212      186  792.5927 449.8534     150
#> 34   119           2    12  4256  4462      206  518.6455 786.5630     150
#> 35   119           2    13  4526  5066      540 1472.5263 764.4450     150
#> 36   119           3     1     0   184      184  985.9541 730.5059     150
#> 37   119           3     2   220   663      443  472.1210 752.5903     150
#> 38   119           3     3   730  1157      427 1464.3207 712.1701     150
#> 39   119           3     4  1207  1643      436  968.3952 420.4352     150
#> 40   119           3     5  1670  2093      423  987.8821 119.0672     150
#> 41   119           3     6  2413  3110      697 1516.4018 753.7404     150
#> 42   119           3     7  3180  3926      746  446.9097 755.2470     150
#> 43   119           3     8  3993  4749      756 1499.2257 763.7347     150
#> 44   119           3     9  4766  4989      223 1389.2216 699.5839     150
#> 45   119           3    10  5086  5689      603  400.2932 714.6202     150
#> 46   119           3    11  5746  6782     1036  981.1028 436.1339     150
#> 47   119           3    12  6802  7135      333  965.8765 299.7169     150
#> 48   119           3    13  7405  7569      164  480.4713 776.6188     150
#> 49   119           4     1     0   233      233  975.1394 746.1660     150
#> 50   119           4     2   270  1217      947  427.4524 747.2374     150
#> 51   119           4     3  1446  1850      404 1443.5337 745.5802     150
#> 52   119           4     4  1956  2523      567  537.5963 766.5012     150
#> 53   119           4     5  2546  2993      447  394.9710 748.7150     150
#> 54   119           4     6  3039  3256      217  907.8480 480.2590     150
#> 55   119           4     7  3296  4143      847  489.1409 746.8854     150
#> 56   119           4     8  4206  5416     1210 1455.0079 710.4423     150
#> 57   119           4     9  5479  6062      583  482.7405 764.8192     150
#> 58   119           4    10  6232  6622      390 1527.8785 738.6195     150
#> 59   119           4    11  6689  7355      666  450.4148 774.5962     150
#> 60   119           4    12  7559  7749      190  965.3538 383.7982     150
#> 61   119           4    13  7769  8182      413  969.9331 144.8225     150
#> 62   119           4    14  8228  8602      374  950.3255 536.0833     150
#> 63   119           4    15  8635  9052      417  959.0249 284.1379     150
#> 64   119           5     1     0   210      210  976.5170 750.1115     150
#> 65   119           5     2   250   477      227  492.1806 735.4280     150
#> 66   119           5     3   497   917      420  371.6881 770.6937     150
#> 67   119           5     4   937  1097      160  506.1086 783.0628     150
#> 68   119           5     5  1167  2033      866 1490.6202 762.1272     150
#> 69   119           5     6  2143  2720      577 1608.9363 777.1772     150
#> 70   119           5     7  2883  3386      503  456.9285 766.7936     150
#> 71   119           5     8  3456  3989      533 1515.0700 747.5654     150
#> 72   119           5     9  4009  4499      490 1430.7991 767.7693     150
#> 73   119           5    10  4569  4826      257  494.2187 762.7068     150
#> 74   119           5    11  4846  5283      437  348.8281 779.3330     150
#> 75   119           5    12  5306  5516      210  524.1386 751.4163     150
#> 76   119           5    13  5596  6599     1003 1503.1187 779.2121     150
#> 77   119           5    14  6686  7395      709  523.7418 762.9001     150
#> 78   119           5    15  7439  8212      773  966.2146 417.9438     150
#> 79   119           5    16  8239  9009      770  977.0369 149.6783     150
#> 80   119           5    17  9085  9562      477  471.5830 707.7810     150
#> 81   119           5    18  9605 10148      543  958.2060 327.6902     150
#> 82   119           5    19 10168 10425      257  980.4097 178.6096     150
#> 83   119           5    20 10625 11755     1130  392.2884 759.8224     150
#> 84   119           5    21 11801 12374      573  929.6616 319.2279     150
#> 85   119           5    22 12618 12834      216  352.4790 822.6459     150
#> 86   119           6     1     0   236      236  963.4609 755.3811     150
#> 87   119           6     2   256   430      174  962.7514 619.0616     150
#> 88   119           6     3   626  2263     1637  413.3652 790.0949     150
#> 89   119           6     4  2283  2433      150  592.6529 756.9108     150
#> 90   119           6     5  2453  3049      596  468.5629 739.4379     150
#> 91   119           6     6  3179  4086      907 1534.3101 784.0435     150
#> 92   119           6     7  4266  4605      339  991.8175 481.4887     150
#> 93   119           6     8  4672  5245      573  950.9352 199.0034     150
#> 94   119           6     9  5272  6778     1506  980.3947 430.5640     150
#> 95   119           6    10  6882  7558      676 1586.7961 735.2838     150
#> 96   119           6    11  7605  7828      223 1043.5969 359.9672     150
#> 97   119           6    12  7848  9161     1313  952.2730 181.9225     150
#> 98   119           6    13  9181  9361      180  948.9465 266.7840     150
#> 99   119           6    14  9425 10081      656 1535.9884 741.0666     150
#> 100  119           6    15 10104 10281      177 1418.5998 761.3546     150
#> 101  119           6    16 10348 11018      670  464.4767 786.1714     150
#> 102  119           6    17 11084 11278      194 1333.7384 779.3773     150
#> 103  119           6    18 11297 11581      284 1524.3373 751.4210     150
#> 104  119           6    19 11644 11994      350  440.0377 727.9646     150
#> 105  119           6    20 12067 12671      604  987.9853 309.9513     150
#>     disp_tol
#> 1        100
#> 2        100
#> 3        100
#> 4        100
#> 5        100
#> 6        100
#> 7        100
#> 8        100
#> 9        100
#> 10       100
#> 11       100
#> 12       100
#> 13       100
#> 14       100
#> 15       100
#> 16       100
#> 17       100
#> 18       100
#> 19       100
#> 20       100
#> 21       100
#> 22       100
#> 23       100
#> 24       100
#> 25       100
#> 26       100
#> 27       100
#> 28       100
#> 29       100
#> 30       100
#> 31       100
#> 32       100
#> 33       100
#> 34       100
#> 35       100
#> 36       100
#> 37       100
#> 38       100
#> 39       100
#> 40       100
#> 41       100
#> 42       100
#> 43       100
#> 44       100
#> 45       100
#> 46       100
#> 47       100
#> 48       100
#> 49       100
#> 50       100
#> 51       100
#> 52       100
#> 53       100
#> 54       100
#> 55       100
#> 56       100
#> 57       100
#> 58       100
#> 59       100
#> 60       100
#> 61       100
#> 62       100
#> 63       100
#> 64       100
#> 65       100
#> 66       100
#> 67       100
#> 68       100
#> 69       100
#> 70       100
#> 71       100
#> 72       100
#> 73       100
#> 74       100
#> 75       100
#> 76       100
#> 77       100
#> 78       100
#> 79       100
#> 80       100
#> 81       100
#> 82       100
#> 83       100
#> 84       100
#> 85       100
#> 86       100
#> 87       100
#> 88       100
#> 89       100
#> 90       100
#> 91       100
#> 92       100
#> 93       100
#> 94       100
#> 95       100
#> 96       100
#> 97       100
#> 98       100
#> 99       100
#> 100      100
#> 101      100
#> 102      100
#> 103      100
#> 104      100
#> 105      100
# }